
Local Rescheduling – A Novel Approach for
Efficient Response to Schedule Disruptions

Jürgen Kuster, Dietmar Jannach, and Gerhard Friedrich

Abstract— Whenever an unforeseen disturbance occurs dur-
ing the execution of scheduled operations, rescheduling might be
necessary: Beside temporal shifts and the allocation of alternative
resources, also potential switches from one process variant
to another one have typically to be considered. In realistic
scenarios of operational disruption management (DM) the high
number of potential options makes the provision of online
decision support complex. It is thus necessary to significantly
reduce the size of the regarded (search) problems which
can for instance be achieved by applying methods of partial
rescheduling. However, existing approaches such as Affected
Operations Rescheduling (AOR) or Matchup Scheduling (MUP)
focus on production-specific problems and can not be applied
to more generic problem classes. To overcome this limitation,
we introduce a novel approach to partial rescheduling in this
paper: Local Rescheduling (LRS) is based on the incremental
extension of a time window which is regarded for potential
schedule modifications. We discuss how this time window can
be initialized, extended and used for rescheduling. Moreover,
we illustrate the superior performance of LRS in comparison
with full rescheduling and MUP.

I. INTRODUCTION

As an intrinsic and pervasive aspect of the real world,
uncertainty typically leads to deviations from predetermined
plans. The process of responding to unforeseen disturbances
during the execution of planned and scheduled operations
by ways of rescheduling is called disruption management
(DM, see [1], [2]): Central aim is to select appropriate repair
actions, directed at the minimization of the negative impact
typically associated with a disruption. Practically relevant
options are especially (1) the temporal shift of one or several
activities, (2) a change in the allocation of resources and
(3) switches from one valid process variant to another one.

It is particularly the latter form of intervention that makes
DM more than just an application of scheduling methods:
Rather than only identifying valid starting times and resource
allocations for a fixed set of activities (in the scheduling
part of the problem), the structure of the executed operations
itself has also to be reconsidered (in the planning part of the
problem). The space of relevant options is thus even larger
than in classical schedule optimization. As the complexity
associated with analyzing all potential combinations of repair
actions coincides with the typical requirement of responding
to a disruption as quickly as possible, the use of exact

Manuscript received October 31, 2006. The work presented herein was
partially funded by grants from (1) FFF Austria, Project cdm@airports, and
(2) the European Union, Project WS-Diamond, Contract 516933.

J. Kuster, D. Jannach and G. Friedrich are with the Institute of Business
Informatics and Application Systems at the University of Klagenfurt,
Universitätsstraße 65-67, 9020 Klagenfurt, Austria (e-mail: {jkuster,
dietmar, gerhard}@ifit.uni-klu.ac.at)

and deterministic algorithms is usually inappropriate for the
provision of online decision support in realistic scenarios of
operational DM. However, it is not sufficient to simply imple-
ment a metaheuristic procedure either: Recent and extensive
performance evaluations (see [3], for example) reveal that
even by using the most powerful heuristic procedures only
up to about 100-120 activities can be scheduled efficiently
in reasonable time. Beside the fact that these studies only
apply to the scheduling part of the DM problem, it has to
be stated that this number of activities is relatively small in
relation to many real-world problems.

In order to cope with realistic problem sizes, other strate-
gies than simply optimizing all future operations (in a proce-
dure equal or similar to the one applied during the generation
of the initial schedule) have therefore to be considered. A
good idea is to take the existing schedule (the baseline
schedule) into account and to actually do rescheduling. This
is basically what has motivated the emergence of partial
rescheduling approaches (see [4] for an overview): Instead of
generating a new schedule for all future activities (such Full
Rescheduling, FRS, is usually done through the application
of existing scheduling algorithms), only a subset of pending
operations is considered for modification. This way, an
optimal combination of schedule efficiency and schedule
stability shall be attained.

Existing approaches to partial rescheduling have mainly
focused on production-specific scheduling problems. Af-
fected Operations Rescheduling (AOR, see [5], [6], [7]) can
only be applied to job shop problems, as the underlying bi-
nary tree allows only for one job and one resource successor
per activity. Similarly, Matchup Scheduling (MUP, see [8],
[9]) is restricted to problems where activities require no more
than one resource. Motivated by the fact that many practical
problems can not be mapped to these specific kinds of
problems, we herein present a novel, more generic approach
to partial rescheduling: Local Rescheduling (LRS) is based
on the incremental extension of a time window regarded for
the reparation of a disrupted schedule.

The remainder of this document is structured as follows:
In Section II the Extended Resource-Constrained Project
Scheduling Problem (x-RCPSP) is introduced as a conceptual
framework for the formal description of disruption manage-
ment problems. In Section III the LRS method is presented
in detail: In particular, an exemplary way of initializing the
time window after the occurrence of a disruption as well
as potential time window extension schemes are discussed.
Section IV evaluates Local Rescheduling in comparison with
Full Rescheduling and a generalized version of Matchup



Scheduling (which is basically a specific form of LRS): It
is shown that the performance of an evolutionary algorithm
can be increased drastically through the consideration of LRS
and that even large problems can be tackled in reasonable
time by use of this partial rescheduling method.

II. THE EXTENDED RCPSP

The Resource-Constrained Project Scheduling Problem
(RCPSP, see [10], [11]) provides a framework for the formal-
ization of scheduling problems. We take it as a starting point
for the description of DM problems due to several reasons:

� Unlike the production-specific job shop, flow shop and
open shop problems, the more generic RCPSP imposes
no restrictions on the number of resource entities, the
structure of processes or the associated requirements.

� Highly efficient algorithms are available for the genera-
tion of schedules based on the RCPSP: A recent survey
and evaluation can be found in [3], for example.

� Activities, precedence constraints, resources and re-
spective requirements form the fundamental modeling
constructs of an RCPSP: They make it possible to
describe entities and relationships on a reasonably high
level of abstraction.

Even though the RCPSP can thus be applied for mod-
eling and solving the scheduling part of DM problems,
it unfortunately provides no support for the description of
alternative process execution paths: It is not possible to
consider options such as the dynamic insertion or removal
of activities, changes in the order of activity execution or
the serialization/parallelization of process steps. The only
approach to additional structural flexibility has been made in
the Multi-Mode RCPSP (MRCPSP, see [12]), which allows
the definition of different execution modes for each activity:
Thereby it is possible to consider different combinations
of durations and resource requirements in the process of
schedule optimization. However, this concept is not sufficient
for the description of more complex process variations.

In the context of the RCPSP, previous research on DM
(see [13], [14], [15], for example) has mainly focused on
the scheduling part of respective problems. To make the
consideration of additionally relevant process variations pos-
sible, we have proposed to extend the classical RCPSP by
the concept of alternative activities: The Extended Resource
Constrained Project Scheduling Problem (x-RCPSP, see [16])
is based on a distinction between active and inactive activi-
ties and the idea of considering only active elements in the
generation of the final schedule. By activating and deactivat-
ing activities according to predefined substitution rules and
various forms of constraints, the activation state of an x-
RCPSP instance can be modified continuously and different
process variants can be considered during optimization.

Formally, the structure of the x-RCPSP can be summarized
as follows [16]: A process is described by a set of potential
activities A� � �0, 1, ..., a, a � 1�. The first and the last
element correspond to abstract start and end activities, having
a duration of 0 and no resource requirements associated. All
remaining elements i � A� have an arbitrary non-negative

duration di assigned. A � A� represents the set of active
activities, implying that the set difference A��A groups all
inactive operations. R � �1, ..., r� defines a set of renewable
resource types: For each k � R, a constant amount of ck units
is available. As regards the description of activity relations,
the following modeling constructs are available:

� The elements in A� can be ordered by use of prece-
dence constraints. P� contains all potentially relevant
constraints: pi,j � P� states that an activity i � A�

has to be finished before or at the start of j � A�.
Corresponding to the distinction between active and
inactive elements, P � P� contains only those pi,j

for which i, j � A.
� Resource requirements describe the relation between

activities and resource types: Q� is a two-dimensional
array combining all i � A� with all k � R. The element
qi,k � Q� then describes how many units of resource
type k are required throughout the execution of i.

Valid activation state modifications are defined by use of
the following additional constructs:

� Activity substitution rules describe legal forms of de-
liberate activation state modifications. The existence of
the element xi,j in the respective set of potential sub-
stitutions X� indicates that the activation of j � A��A
in exchange for the deactivation of i � A represents a
valid form of process variation.

� The activation or deactivation of an activity might
have an impact on the state of one or several other
activities. Activity dependencies/constraints therefore
describe obligatory activation state modifications as-
sociated with the application of activity substitution
rules. Elements of the following types are contained
in the corresponding set M�: m�

i,j states that activity
j � A� has to be activated upon the activation of
activity i � A�; m�

i,j states that j has to be deactivated
upon the deactivation of i; m�

i,j states that j has to be
deactivated upon the activation of i; and m�

i,j states that
j has to be activated upon the deactivation of i.

Each combination of activation state and corresponding
activity starting times represents a solution of the x-RCPSP:
A schedule S thus combines the planned starting times β i of
all activities i � A in a vector �β1, β2, ..., βn	 with n � 
A
.
S is valid if both of the following criteria are fulfilled:

� Activation State Validity. The activation state of the x-
RCPSP is represented by the set of active activities A. It
is considered valid if A can be derived from an original
(valid) activation state through the application of the
substitution rules defined in X �, taking all constraints
of M� into account.

� Starting Times Validity. If the set of activities running at
a time t is denoted as A�t� � �i � A
βi � t � βi� di�,
the following criteria can be defined for starting times
validity: (1) βi 
 0 for any i � A, (2) βi � di � βj for
any pi,j � P and (3)

�
i	A�t�

qi,k � ck for any k � R
at any t. Note that these criteria alone define schedule
validity in the context of the classical RCPSP [17].



For the regarded context, we define a disruption manage-
ment problem as a combination of the following elements:

� Execution State. The state of a disrupted system is
described by an existing schedule S and the current
point in time tc (i.e. the time of disruption detection). I
is the x-RCPSP describing relevant constraints as well
as valid forms of process modifications, and forming
the basis of S.

� Disruption. A disruption D is defined by its type and a
set of corresponding parameters: Potential rescheduling
factors are described by Li et al. [5] or Vieira et
al. [4] for example. However, due to the fact that the
classification and definition of Zhu et al. [15] is both
more topical and closer related to the RCPSP, we focus
on the types of disruptions distinguished there in the
following: We take the New Activity, the Precedence,
the Activity Duration, the Activity Resource and the
Resource Disruption into consideration.

� Optimization Goal. The preferred quality of the re-
sulting schedule is defined by an evaluation function
ϕ : S � R which is used to convert a schedule into a
corresponding cost value. Whereas classical schedule
optimization focuses mainly on the minimization of
the overall execution time (the so-called makespan),
more complex goals are usually given in DM prob-
lems: Common objectives (or at least part of composite
objectives) are the minimization of costs for earliness,
tardiness, the application of interventions or deviations
from the original schedule. Note that apart from cost
minimization of course also quality maximization can
be defined as a goal for optimization.

The solution process aims at the identification of an
optimal schedule: SÆ is a modification of S (and a legal
solution of I), taking the occurrence of D at tc into account
and being better than all potential alternatives in terms of ϕ.
In practical scenarios, the difference between S and S Æ is
typically interpreted as the set of interventions to apply. In
the following, we use the subsequent two-step approach for
the identification of SÆ:

1) I is combined with the modifications implied by D in a
disrupted problem instance ID. Accordingly, SD rep-
resents a modified version of S taking D into account
and describing what would happen if no intervention
was taken. For the identification of SD any method
that returns a feasible (yet still suboptimal) solution
within minimal time can be applied: We use a simple
right-shift procedure.

2) According to ϕ optimization is performed on S D

until a predefined breaking condition is fulfilled: In
operational DM, it is a common approach to spend a
certain amount of time searching a solution as good as
possible. The result of optimization is S Æ, which can
therefore be considered an optimized version of S D.

LRS provides a possibility to take the information associ-
ated with a disruption into account during optimization: Thus
we focus on the discussion of the latter step in the following.

III. LOCAL RESCHEDULING

A. Overview

An unforeseen disturbance typically changes some part
of the future. Local Rescheduling is based on the idea of
responding to a disruption right there where it takes effect:
Instead of trying to optimize the entire future immediately,
it is first attempted to resolve problems locally. Optimiza-
tion therefore starts within a relatively small time window
which is iteratively extended until finally the entire future is
regarded: This way, it is made sure that the global optimum
is definitively not excluded from the search space.

The use of LRS is encouraged whenever (1) the baseline
schedule is (nearly) optimal and (2) there exist possibilities
to cope with disruptions on a local level: In any other case,
it might be ineffective to focus on time windows smaller
than the entire future. However, we claim that in most
practical applications of DM the criteria for LRS to unfold its
full potential are fulfilled. Firstly, there is usually sufficient
time available for the optimization of the initial schedule
prior to execution: It is thus typically (at least close to)
optimal. Secondly, means for local schedule reparation are
common: Otherwise responding to disruptions would be even
more complex and almost impossible within reasonable time.
After all, human process managers who are responsible for
operational DM usually also start with the consideration of
a relatively small time window and regard more complex
options only if sufficient time remains. Note that this is also
what makes the approach of LRS both natural and intuitive.

The basic LRS procedure is summarized in Algorithm 1:
The regarded time window is defined by a lower bound
li and an upper bound ui in each iteration i � �1, ..., n�.
The amount of time by which the regarded period shall be
extended is described in mi and pi: The former element
defines how to reduce the lower bound, the latter element
defines how to increment the upper bound. t c denotes the
current time (i.e. the time the disruption is detected) and
th represents the end of the regarded time horizon. In the
presented algorithm, first (line 1) the initial time window is
initialized. In an iterative procedure (lines 2-7), the regarded
period is then continuously extended: The step sizes are
determined (lines 3-4) before the boundaries are updated
(line 5) and rescheduling is performed within the modified
time window (line 6). Note that l0 �

�
i mi � tc and

u0 �
�

i pi � th have to be true if it shall be ensured that
the entire future is regarded in the final iteration.

Algorithm 1 LRS (BASIC SCHEME)
Input Disrupted Schedule SD, Disruption D, Number of
Iterations n, Current Time tc, End of Regarded Horizon th

1: �l0, u0	 � INITIALIZETIMEWINDOW (SD, D)
2: for each i in 1 to n do
3: mi � GETDOWNWARDSTEPSIZE (i, n, l0, tc)
4: pi � GETUPWARDSTEPSIZE (i, n, u0, th)
5: li � li
1 �mi, ui � ui
1 � pi

6: RESCHEDULE (SD, li, ui)
7: next



TABLE I

POTENTIAL STRATEGY FOR TIME WINDOW INITIALIZATION

Type of disruption l0 u0

(1) New Activity planned starting time of
the inserted activity

planned ending time of
the inserted activity

(2) Precedence original starting time of
the successor

new planned ending
time of the successor

(3) Activity Duration original ending time of
the affected activity

new planned ending
time of affected activity

(4) Activity Resource planned starting time of
the affected activity

planned ending time of
the affected activity

(5) Resource start of the period of
reduced capacity

end of the period of re-
duced capacity

The concrete realization of the unspecified methods char-
acterizes a particular implementation of the LRS procedure:
(1) INITIALIZETIMEWINDOW defines the way the time
window is initialized, (2) RESCHEDULE defines the way
rescheduling is conducted for a certain period of interest and
(3) GETDOWNWARDSTEPSIZE as well as GETUPWARD-
STEPSIZE define the way the time window is extended in
each iteration. All of these aspects are discussed in more
detail in the following.

B. Time Window Initialization

When deciding on a time window �li, ui	, a tradeoff be-
tween two contradicting requirements has to be found: On the
one hand, the search space shall be kept as small as possible
to make optimization simple. On the other hand, it has to be
large enough to stand a reasonable chance of containing an
adequate solution to the disruption management problem. To
cope with these requirements, the proposed Local Reschedul-
ing procedure is based on the approach of extending the
initial time window already in the first iteration: As �l0, u0	
is thus never actually considered for rescheduling but rather
defines the starting point for continuous extension, it can be
initialized with an interval as tight as possible.

Basically, this means that the initial time window shall
only cover the period in which the effects of the occurring
disruption unfold. The proper choice of l 0 and u0 thus
depends on the type of disruption to deal with: Table I
summarizes a potential strategy for the initialization of the
time window given any of the regarded kinds of disruptions.
(1) If an additional activity has to be scheduled, resource
or precedence conflicts might arise during its execution:
Therefore, l0 is set to the planned starting and u0 is set to the
planned ending time of the inserted activity. (2) If an addi-
tional precedence constraint is inserted, Local Rescheduling
shall start with the period between the original start and the
updated end of the new successor. (3) If the duration of an
activity is extended, conflicts are likely to arise within the
period of activity extension: l0 is set to the original, u0 is
set to the new planned ending time of the activity. (4) If an
activity requires more resources than originally intended, its
entire execution period shall be regarded initially. (5) If the
capacity of a resource type decreases during a certain time
frame, this entire period of reduced availability shall describe
the initial time window.

C. Rescheduling

The actual rescheduling procedure consists of three sep-
arate steps: (1) A partial schedule optimization problem is
created for all elements within the regarded time window.
(2) Optimization is performed on this subproblem. (3) The
result of optimization is merged with the original schedule.

As regards the first step, let ID � �R,A�,P�,Q�,X�,
M�� denote the instance of the x-RCPSP that provided the
basis for the disrupted schedule SD. A subproblem ID

s �
�Rs,A�

s ,P�
s ,Q�

s ,X�
s ,M�

s � for the time window �l, u	 can
be created according to the following strategy, for example:

� Activities. Let A�t� � �i � A
βi � t � βi � di� again
denote the subset of activities scheduled to be running
at a time t and A�l,u� � �i � A
l � βi, βi � di � u� be
the subset of activities scheduled to be running within
the time window �l, u	. The subset of relevant activities
A�

s � �A�l,u� � �A�l� � A�u�	 � �A��A	� consists
of three parts: (1) A�l,u� denotes the set of operations
starting and ending within the time window: They rep-
resent the elements which are actually modified during
optimization. (2) A�l� � A�u� combines the activities
running at the start and the end of the regarded period:
As they are (partly) lying outside the time window of
interest, they are marked as unmodifiable (neither shifts
of starting times nor modifications of activation states
are allowed). They still have to be regarded to make sure
that associated constraints and requirements are actually
considered. (3) A��A represents the set of inactive
elements, which are not part of SD: All of them are
considered in order to preserve all options of applying
activity substitutions. Note that this is unproblematic in
terms of complexity as only the number of elements in
X�

s defines the size of the regarded search space.
� Activity substitution rules. The set of activities acti-

vated/deactivated upon the execution of x i,j � X� can
be determined unambiguously for valid instances of the
x-RCPSP. Let A��xi,j	 denote the set of all operations
activated upon the application of xi,j � X�, combining
j with all activities activated due to the constraints
in M�. Let A��xi,j	 denote the set of deactivations
associated with xi,j , correspondingly. X �

s combines
all xi,j � X� for which the following conditions are
fulfilled: (1) The replaced activity is contained in the
subproblem: i � A�

s . It is obvious that a substitution
rule is never applicable if this first criterion is not true.
(2) The deactivations associated with the substitution
rule concern only operations scheduled within the pe-
riod of interest: A��xi,j	 � A�l,u�. If activities outside
the regarded time window were deactivated, the effects
of the respective substitution would not be traceable.
(3) As regards the activations associated with xi,j , all
additional activities have to be scheduled within �l, u	:
Only in that case the effect of applying a substitution
rule can be evaluated correctly. No element in A��xi,j	
must therefore have a successor starting before or a
predecessor ending after the regarded time window.



� Activity dependencies. Following the above argumenta-
tion, only constraints for which both the left- and the
right-hand side activities are contained in the subprob-
lem are considered. Thus, M�

s contains all m�
i,j , m�

i,j ,
m�

i,j and m�
i,j for which i, j � A�

s .
� Precedence constraints. According to the fact that ac-

tivities lying (completely) outside the regarded time
window are not considered at all in the generated sub-
problem, all precedence constraints associated with such
elements are also omitted. As therefore only constraints
for which both the predecessor and the successor are
contained in A�

s are of interest, the subset of constraints
can be defined as P�

s � �pi,j � P�
i, j � A�
s �.

� Resource requirements. In the generated subproblem it
is sufficient to consider the requirements associated with
activities in A�

s . Therefore, Q�
s � �qi,k � Q�
i � A�

s �.
� Resources. Only those resource types of which at least

one entity is required by the contained activities have to
be considered. The subset of resources can therefore be
defined as Rs � �k � R
�i	A�

s
qi,k � 0, qi,k � Q�

s �.
As regards the second step, basically the same optimiza-

tion approaches as used for the creation of the original
schedule can be applied. The only aspects that have to be
considered are (1) the existence of an initial solution (the
part of SD describing the starting times of elements in A�

s )
as well as (2) the fact that no activity of the resulting (partial)
schedule must lie outside the regarded time window.

Regarding the limit of optimization, various strategies can
be distinguished for the division of the overall available
time among the LRS iterations: One approach is to portion
time linearly (i.e. an equal amount of time is spent in each
iteration), another one to divide it proportionally to the
number of activities contained in the respective subproblem
(i.e. more/less time is spent on subproblems containing more
activities). The proper choice depends mainly on the average
problem complexity: If the difficulty of finding a solution
increases drastically with the number of activities, it might
be better to focus on narrow time windows and to therefore
apply an indirect proportional division of the available time.

After the predefined breaking condition has been reached,
the optimized solution of the subproblem – the subschedule
SÆ

s – is merged with the original schedule SD in the third
and last step of the rescheduling procedure: The information
on all elements within the time window �l, u	 is taken from
SÆ

s and used to update SD accordingly.

D. Extension Scheme

The GETDOWNWARDSTEPSIZE and the GETUPWARD-
STEPSIZE methods define the way the time window is
extended in each iteration of the LRS procedure. From the
many possible forms of decreasing the lower bound from l 0

to tc and increasing the upper bound from u 0 to th, we focus
on three approaches in the following:

� Linear Extension: The amount by which the time
window is expanded is equal in each iteration. The
downward step size is thus mi � l0
tc

n for each
i � �1, ..., n� and the upward step size is ui �

th
u0
n .

Fig. 1. Linear and Exponential Extension Scheme

� Exponential Extension: The amount by which the time
window is expanded increases exponentially in each
iteration. If l0 � tc � 0, th � u0 � 0 and n � 1,
the downward and upward step sizes can, for instance,
be defined as follows for each i � �1, ..., n�:

mi � i
log �l0�tc�

log �n� (1)

ui � i
log �th�u0�

log �n� (2)

By use of an additional parameter k � R� it is
easily possible to vary the step size relations. Consider
the following modified version of the above functions,
which are valid if l0 � tc � 0, th � u0 � 0 and n � 0:

mi � �i� k	
log �l0�tc�

log �n�k� (3)

ui � �i� k	
log �th�u0�
log �n�k� (4)

� Logarithmic Extension: The amount by which the time
window is expanded increases logarithmically in each
iteration. If n � 0 and k � R�, step size functions can
be defined as follows, for example:

mi � log �i� k	 �
l0 � tc

log �n� k	
(5)

ui � log �i� k	 �
th � u0

log �n� k	
(6)

The selected extension scheme has significant impact on
the development of the size of the search space and the
complexity of the optimization problem: Whereas a linear
form of extension typically implies an increase of the number
of considered activities at a constant rate, the exponential
(logarithmic) extension scheme rather focuses on periods
close to (far from) the original time window. Note again
that also other functions can be used to define the way the
time window is extended.

The difference between two of the above approaches is
illustrated in Figure 1, where several activities are depicted
as bars along the (horizontal) time line. The black area
visualizes an activity duration disruption, serving as a start-
ing point for the determination of the initial time window
�l0, u0	: The subfigure on the left-hand side shows the linear,
the subfigure on the right-hand side shows the exponential
extension scheme. Dark-grey activities are considered in the
first, grey activities in the second and light-grey activities in
the third iteration. It can easily be observed that the size of
the regarded subproblems increases much faster based on the
linear time window extension scheme.



IV. PERFORMANCE EVALUATION

A. Experimental Setup and Instance Generation

For the evaluation of LRS in comparison with other
rescheduling strategies, a generic framework for the solution
of disruption management problems has been implemented in
Java: Schedule optimization is based on the genetic algorithm
described in [16], which itself represents an extension of the
RCPSP-specific algorithm proposed by Hartmann [18].

As there are currently neither generators for nor instances
of reactive rescheduling problems available [19], we have
also decided on the realization of a corresponding test case
generator. It can be used to create combinations of baseline
schedules and associated sets of disruptions by random but
according to various parameters: For example network com-
plexity, resource factor and resource strength are available
as defined by Kolisch et al. [20]. Additional settings make it
possible to control the number of inter-process relations, the
amount of slack time incorporated into the baseline schedule,
the number and properties of occurring disruptions, the given
structure of activity alternatives, etc. Based on the respective
parameters, 16 different problem classes have been defined
according to the following configurations:

� Low/High Process Complexity. This setting controls the
number of precedence constraints linking activities and
processes: Low complexity means few, high complexity
means many precedence relations.

� Low/High Resource Complexity. The aspects of resource
requirements and resource availability are combined in
this setting: Low complexity means that many resource
entities are available to cover few and relatively small
requirements, high complexity indicates the opposite.

� With/Without Left-Shifts. Scheduling an activity to start
earlier than in the original schedule is considered a left-
shift. If doing so represents a legal form of modification,
more options of rescheduling are available and finding
the optimal solution is thus more difficult.

� Tight/Wide Baseline Schedule. The distribution of activ-
ity starting times and the amount of incorporated slack
time control the tightness of a schedule: A schedule is
considered tight if activities start at the earliest possible
point and tend to be executed in parallel.

Of each defined class, ten problems of three different sizes
have been generated (giving an overall of 480 instances):
Small-sized problems consist of 10 processes containing 10
activities; medium-sized problems of 30 processes contain-
ing 10 activities; and large-sized problems of 50 processes
containing 20 activities. Instances of 100, 300 and 1000
activities (executed on three different resource types) were
thus considered for evaluation. Note that these problems are
much larger than the ones typically regarded in classical
schedule optimization (see [21]).

From zero up to five alternatives were associated with each
activity, making it possible to vary the process execution
path and to therefore minimize the negative impact associated
with a disruption. Basically, each of the following forms of
alternation was assigned with a probability of P � 0.05:

� Longer duration/less requirements. The alternative ac-
tivity requires less resources but its di is larger.

� Shorter duration/more requirements. The other way
round, the alternative activity requires additional re-
source entities but the associated di is smaller.

� Shorter duration/additional activity. The alternative
lasts shorter but is dependent on an optional activity: If
it is activated, an additional activity has to be scheduled.

� Activity insertion. The alternative is entirely equal to the
original activity, except for the fact that it depends on
the execution of an optional (additional) activity.

� Parallelization. The alternative activity differs from the
original one only in lacking one precedence constraint
linking the original activity to one of its successors.

From all given alternatives, one was chosen to be active
in the original schedule: All other ones were made less
attractive through the assignment of appropriate activity
execution costs. This way it is made sure that the baseline
schedule is optimal (as was defined as a requirement for LRS
to unfold its full potential in Section III-A): The originally
scheduled process variant has the smallest costs associated.

As regards the disturbance occurring during the execution
of the baseline schedule, in each case the duration of exactly
one activity is doubled: This Activity Duration Disruption is
assumed to be detected immediately at the start of execution.
The goal is then to minimize a weighted sum of overall
process tardiness, activity execution costs and the number
of schedule modifications: As regards the former element,
let δi denote the due date assigned to an activity i � A�:
each time unit the abstract process end activity is scheduled
to finish after a predefined δi causes costs of 1; as regards the
latter element, each temporal shift or application of a process
variation causes costs of 3. If Δ denotes the number of such
modifications and εi corresponds to the cost of executing
i � A, the objective can be defined as follows:

min z � 3 �Δ�
�

i	A
εi �

�

i	A
max �0, βi � di � δi	 (7)

B. Regarded Rescheduling Methods

In order to eliminate the effects of randomness, optimiza-
tion was performed ten times for each generated instance
based on each of the following five rescheduling methods:

� Full Rescheduling. In the strategy denoted as FRS, all
the available time is spent regarding the entire future.
Full Rescheduling can be considered a specific version
of LRS: Only n � 1 iteration is conducted, the time
window is initialized with l0 � tc and u0 � th in any
case and the size of the steps to take is set to 0.

� Matchup Scheduling. It has already been mentioned
that the original form of MUP [8] can not easily be
applied to more generic problem classes such as the
RCPSP or the x-RCPSP. However, the basic idea behind
Matchup Scheduling – trying to reschedule everything
before a matchup point which is incrementally extended
until a valid solution is identified – can be adapted
to define another specific version of LRS: The lower



bound of the time window is set to l0 � li � tc for
each iteration i � �1, ..., n�. In n � 3 iterations, the
upper bound is extended according to the linear function
defined in Section III-D. Note that of course any other
extension scheme could also be applied to increase the
upper bound in an arbitrary number of iterations: What
characterizes Matchup Scheduling is the fact, that the
time window is only extended into one direction.

� Local Rescheduling. LRS has been implemented accord-
ing to the above description. The extension schemes
proposed in Section III-D form the basis for three
different variants of Local Rescheduling: LRS1 employs
the linear function, LRS2 is based on the exponential
and LRS3 on the logarithmic extension scheme as
described in the equations (3-6) with k � 1. The number
of iterations was set to n � 3.

Focusing on operational DM, where it is necessary to
select interventions in near real-time, we decided on tight
time limits: In two different scenarios, the time available for
optimization (on a standard desktop PC) was limited to 5
or 15 seconds, respectively. For each of the 160 generated
cases, an overall of 10 (runs) � 5 (strategies) � 2 (limits)
� 100 separate test runs has therefore been conducted.

C. Results

Even by use of the most powerful methods (see [22]
for a recent approach) it is not possible to determine the
exact optimum for problem instances of the regarded sizes
in reasonable time. Therefore, the best value that could be
identified during (1) all 100 test runs and (2) an additional

Fig. 2. Overall Performance of the Regarded Rescheduling Strategies

FRS run limited to 10 minutes was taken as a reference
instead: If SD denotes the disrupted and S Æ denotes the best
identified solution, the known optimization potential can be
defined as ϕ�SD	 � ϕ�SÆ	: Accordingly, π � ϕ�SD�
ϕ�S�

ϕ�SD�
ϕ�SÆ�
describes the portion of the known potential that could be
tapped by an arbitrary schedule S. The figures listed in Table
II and summarized in Figure 2 correspond to the average
value of π over all solutions identified in the respective
category1: If, for example, a disrupted schedule caused costs
of 10 monetary units and three optimization runs resulted in
solutions with costs of 5, 2 and 3 associated, the table would
show 83.33% as the average of 10
5

10
2 � 62.5%, 10
2
10
2 �

100.0% and 10
3
10
2 � 87.5%. Each value in the problem-

class specific columns thus aggregates the information on
80 problem instances, for each of which 100 test runs were
performed. Analyzing the figures in context, the following
observations can be made:

1All 480 problem instances and detailed results can be obtained from
http://rcpsp.serverside.at/ssci-07.html: They may serve as a starting point
for further evaluations and comparisons of related procedures.

TABLE II

PORTION OF THE IDENTIFIED OPTIMIZATION POTENTIAL THAT COULD BE TAPPED BY DIFFERENT RESCHEDULING METHODS ON AVERAGE

Activities Limit Method Process Complexity Resource Complexity Left-Shifts Baseline Schedule Overall
low high low high yes no tight wide

100

5 sec

FRS 70,01% 71,43% 76,69% 64,75% 55,51% 85,94% 72,38% 69,07% 70,72%
MUP 73,03% 79,88% 79,28% 73,63% 66,27% 86,64% 79,44% 73,47% 76,46%
LRS1 74,58% 81,47% 81,37% 74,68% 68,15% 87,90% 80,12% 75,93% 78,02%
LRS2 76,04% 81,93% 81,68% 76,29% 69,53% 88,44% 80,56% 77,40% 78,98%
LRS3 73,33% 78,33% 78,37% 73,29% 63,34% 88,32% 77,15% 74,51% 75,83%

15 sec

FRS 77,40% 78,09% 81,74% 73,75% 63,78% 91,71% 78,90% 76,59% 77,75%
MUP 77,69% 85,08% 82,41% 80,36% 71,39% 91,37% 83,96% 78,80% 81,38%
LRS1 80,69% 86,61% 85,44% 81,86% 74,16% 93,14% 86,17% 81,13% 83,65%
LRS2 81,10% 88,37% 86,49% 82,98% 75,96% 93,51% 85,62% 83,85% 84,74%
LRS3 79,41% 83,10% 82,72% 79,79% 69,01% 93,50% 82,87% 79,64% 81,26%

300

5 sec

FRS 34,89% 37,41% 42,87% 29,42% 27,94% 44,36% 35,05% 37,25% 36,15%
MUP 56,22% 54,36% 60,11% 50,47% 50,42% 60,15% 51,82% 58,75% 55,29%
LRS1 65,06% 59,77% 66,78% 58,05% 57,99% 66,83% 59,95% 64,88% 62,41%
LRS2 71,22% 65,84% 69,16% 67,90% 61,53% 75,54% 66,27% 70,79% 68,53%
LRS3 58,23% 55,08% 60,13% 53,18% 50,57% 62,74% 52,36% 60,94% 56,65%

15 sec

FRS 51,96% 54,61% 62,70% 43,87% 41,16% 65,40% 52,22% 54,34% 53,28%
MUP 67,60% 65,11% 71,66% 61,05% 59,29% 73,42% 64,32% 68,39% 66,35%
LRS1 74,42% 67,52% 75,76% 66,19% 64,68% 77,27% 68,97% 72,98% 70,97%
LRS2 78,03% 73,62% 77,86% 73,79% 68,66% 82,99% 74,14% 77,52% 75,83%
LRS3 70,11% 64,26% 72,04% 62,33% 58,40% 75,98% 64,15% 70,22% 67,19%

1000

5 sec

FRS 15,90% 15,48% 24,36% 7,02% 5,31% 26,07% 17,94% 13,45% 15,69%
MUP 49,85% 48,95% 57,12% 41,67% 43,18% 55,61% 47,21% 51,59% 49,40%
LRS1 60,80% 63,57% 68,31% 56,06% 61,98% 62,39% 57,45% 66,92% 62,18%
LRS2 69,06% 67,84% 76,74% 60,16% 62,07% 74,83% 62,34% 74,56% 68,45%
LRS3 56,82% 52,74% 58,67% 50,89% 51,93% 57,63% 49,17% 60,39% 54,78%

15 sec

FRS 21,85% 23,80% 34,70% 10,94% 9,14% 36,51% 24,38% 21,27% 22,82%
MUP 51,47% 56,57% 62,28% 45,76% 45,34% 62,70% 51,22% 56,82% 54,02%
LRS1 64,88% 70,90% 75,56% 60,22% 65,25% 70,52% 63,52% 72,26% 67,89%
LRS2 71,10% 73,11% 79,87% 64,34% 64,96% 79,25% 67,06% 77,16% 72,11%
LRS3 58,52% 60,81% 64,35% 54,98% 55,49% 63,84% 54,35% 64,98% 59,67%



� The developed methods of partial rescheduling provide
consistently and significantly better results than FRS.
Spending the longest time within narrow time windows,
LRS2 could achieve the best overall performance: In
any case much more than 65% of the known potential
could be tapped within only 5 seconds of optimization.

� The relative benefit associated with the application of
partial rescheduling increases along with the problem
size. As FRS is directly affected by additional activities,
it identifies fewer solutions for larger instances within
limited time. In contrast, the size of the regarded sub-
problems increments relatively slowly in LRS.

� If the temporal limit of optimization is extended, the
relative benefit associated with the application of partial
rescheduling decreases: The more time is spent opti-
mizing, the closer the solver gets to the optimal (or the
best known) solution and the harder it gets to identify
possibilities of further improvements.

� The detailed evaluation results reveal that the benefit
of partial rescheduling is particularly high whenever
(1) process and resource complexity are high, (2) left-
shifts have to be considered or (3) the baseline sched-
ule is wide. The former two aspects make problems
complex and difficult to solve in the full rescheduling
approach: They imply the relevance of many constraints
and a large size of the search space. The latter aspect
supports the characteristics of Local Rescheduling: Sub-
problems are smaller (i.e. contain fewer activities) if
the baseline schedule is wide, which means that many
solutions can be identified and evaluated by LRS.

To sum it up, it can be stated that LRS performs par-
ticularly well if the considered problem is complex and if
there is only little time available for the identification of a
good solution: As both of these aspects are typically given in
realistic applications of operational disruption management,
the use of Local Rescheduling approaches can be suggested.

V. CONCLUSION

Presenting an efficient approach to disruption management
in realistic scenarios, this paper first described how the
generic framework of the RCPSP can be extended to make
the consideration of practically relevant forms of interven-
tions possible: Based on the concept of alternative activities,
the x-RCPSP allows to describe also options of process
variation – apart from the options of temporally shifting
activities or reallocating resource entities.

Second, the strategy of Local Rescheduling was intro-
duced: Inspired by the typical approach of human process
managers, it is first tried to resolve problems locally in this
method of partial rescheduling. The remaining time is then
used to incrementally extend the regarded search space: This
way, more far-reaching and more complex forms of schedule
reparation shall be identified. How the relevant time window
can be initialized, extended and applied for rescheduling has
been discussed comprehensively in this paper.

Finally, the conducted performance evaluation was de-
scribed and respective results were discussed. The compari-

son of a generic version of MUP and three variants of LRS
with FRS revealed a significantly better performance of the
proposed partial rescheduling methods. The fact that LRS
performs particularly well on large and complex problems
where only little time is available for optimization suggests
its use in practical applications of disruption management.

REFERENCES

[1] Gang Yu and Xiangtong Qi, Disruption Management: Framework,
Models and Applications, World Scientific Publishing, Singapore,
2004.

[2] Jens Clausen, Jesper Hansen, Jesper Larsen, and Allan Larsen, “Dis-
ruption management,” ORMS Today, vol. 28, pp. 40–43, 2001.

[3] Rainer Kolisch and Sönke Hartmann, “Experimental investigation
of heuristics for resource-constrained project scheduling: An update,”
European Journal of Operational Research, 2005.

[4] Guilherme E. Vieira, Jeffrey W. Herrmann, and Edward Lin,
“Rescheduling manufacturing systems: a framework of strategies,
policies, and methods,” Journal of Scheduling, vol. 6, no. 1, pp. 39–62,
2003.

[5] R.K. Li, Y.T. Shyu, and A. Sadashiv, “A heuristic rescheduling
algorithm for computer-based production scheduling systems,” In-
ternational Journal of Production Research, vol. 31, no. 8, pp. 1815–
1826, 1993.

[6] Riyad J. Abumaizar and Joseph A. Svestka, “Rescheduling job
shops under random disruptions,” International Journal of Production
Research, vol. 35, no. 7, pp. 2065–2082, 1997.

[7] G.Q. Huang, J.S.K. Lau, K.L. Mak, and L. Liang, “Distributed supply-
chain project rescheduling: part II - distributed affected operations
rescheduling algorithm,” International Journal of Production Re-
search, vol. 44, pp. 1–25, 2006.

[8] J.C. Bean, J.R Birge, J. Mittenthal, and C.E. Noon, “Matchup
scheduling with multiple resources, release dates and disruptions,”
Operations Research, vol. 39, pp. 470–483, 1991.

[9] M. Selim Akturk and Elif Gorgulu, “Match-up scheduling under a
machine breakdown,” European Journal of Operational Research, vol.
112, pp. 81–97, 1999.

[10] J. Błazewicz, J. K. Lenstra, and A.H.G. Rinnooy Kan, “Scheduling
projects to resource constraints: Classification and complexity,” Dis-
crete Applied Mathematics, vol. 5, pp. 11–24, 1983.

[11] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch,
“Resource-constrained project scheduling: Notation, classification,
models, and methods,” European Journal of Operational Research,
vol. 112, pp. 3–41, 1999.

[12] Sönke Hartmann, “Project scheduling with multiple modes: A genetic
algorithm,” Annals of Operations Research, vol. 102, 2001.

[13] Christian Artigues, Philippe Michelon, and Stéphane Reusser, “Inser-
tion techniques for static and dynamic resource constrained project
scheduling,” European Journal of Operational Research, vol. 149, pp.
249–267, 2003.

[14] A. Elkhyari, C. Guéret, and N. Jussien, “Constraint programming for
dynamic scheduling problems,” in ISS’04 International Scheduling
Symposium, Hiroshi Kise, Ed., Awaji, Hyogo, Japan, 2004, pp. 84–
89.

[15] Guidong Zhu, Jonathan F. Bard, and Gang Yu, “Disruption man-
agement for resource-constrained project scheduling,” Journal of the
Operational Research Society, vol. 56, pp. 365–381, 2005.

[16] Jürgen Kuster, Dietmar Jannach, and Gerhard Friedrich, “Handling
alternative activities in resource-constrained project scheduling prob-
lems,” in IJCAI-07, Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, 2007, to appear.

[17] Rainer Kolisch and Sönke Hartmann, “Heuristic algorithms for solving
the resource-constrained project scheduling problem: Classification
and computational analysis,” in Project scheduling: Recent models,
algorithms, and applications, pp. 147–178. 1999.

[18] Sönke Hartmann, “A competitive genetic algorithm for resource-con-
strained project scheduling,” Naval Research Logistics, vol. 45, 1998.

[19] Nicola Policella and Riccardo Rasconi, “Testsets generation for
reactive scheduling,” in Workshop on Experimental Analysis and
Benchmarks for AI Algorithms, 2005.



[20] Rainer Kolisch, Arno Sprecher, and Andreas Drexl, “Characterization
and generation of a general class of resource-constrained project
scheduling problems,” Management Science, vol. 41, pp. 1693–1703,
1995.

[21] Rainer Kolisch and Christoph Schwindt und Arno Sprecher, “Bench-
mark instances for project scheduling problems,” in Handbook on
recent advances in project scheduling, Jan Weglarz, Ed., pp. 197–212.
Kluwer, 1999.

[22] Philippe Laborie, “Complete MCS-based search: Application to
resource constrained project scheduling,” in IJCAI-05, 2005, pp. 181–
186.


